Constructing Visual Models with a Latent Space Approach

نویسندگان

  • Florent Monay
  • Pedro Quelhas
  • Daniel Gatica-Perez
  • Jean-Marc Odobez
چکیده

We propose the use of latent space models applied to local invariant features for object classification. We investigate whether using latent space models enables to learn patterns of visual co-occurrence and if the learned visual models improve performance when less labeled data are available. We present and discuss results that support these hypotheses. Probabilistic Latent Semantic Analysis (PLSA) automatically identifies aspects from the data with semantic meaning, producing unsupervised soft clustering. The resulting compact representation retains sufficient discriminative information for accurate object classification, and improves the classification accuracy through the use of unlabeled data when less labeled training data are available. We perform experiments on a 7-class object database containing 1776 images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Visual Words into Concept Space for Action and Scene Recognition

In this paper we propose a novel approach to introducing semantic relations into the bag-of-words framework. We use the latent semantic models, such as LSA and pLSA, in order to define semantically-rich features and embed the visual features into a semantic space. The semantic features used in LSA technique are derived from the low-rank approximation of word-document occurrence matrix by SVD. S...

متن کامل

Scene recognition by semantic visual words

In this paper we propose a novel approach to introduce semantic relations into the bag-of-words framework. We use the latent semantic models, such as LSA and pLSA, in order to define semantically-rich features and embed the visual features into a semantic space. The semantic features used in LSA technique are derived from the low-rank approximation of word-image occurrence matrix by SVD. Simila...

متن کامل

The Rhetorical - Aesthetic Approach to Constructing the Relation between Images and Visual Inventions with Global Politics

Images and photos play an important role in our understanding of domestic and international events. Today we are living in the age of the visualization of politics. The images are vague, rhetorical, and aesthetic components of political and social phenomena and can give them a beautiful or detestable structure. In the digital age, images in and of themselves can define our structure and vision ...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Visualisation of structured data through generative probabilistic modeling

This thesis is concerned with the construction of topographic maps of structured data. A probabilistic generative model-based approach is taken, inspired by the GTM algorithm. Depending on the data at hand, the form of a probabilistic generative model is specified that is appropriate for modelling the probability density of the data. A mixture of such models is formulated which is topographical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005